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II Semester M.Sc. Degree Examination, June 2016
(CBCS)

Mathematics
M 202T : COMPLEX ANALYSIS

Time : 3 Hours Max. Marks : 70

 Instruction : Answer any five full questions.

1. a) Let f(z) = u(x, y) + iv(x, y) be an analytic function. Then show that real and

imaginary parts of an analytic functions are Harmonic. Also evaluate
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∫ −−   where 2z:c = .

b) Define conformal mapping. Discuss the transformation w = ez.

c) State and prove the generalization of Cauchy’s integral formula and use it to

evaluate ∫ −c
4 1z

dz
 , 2z:c = . (4+4+6)

2. a) State and prove Cauchy’s theorem for a disk.

b) If f(z) is analytic in a region C of complex plane, then prove that the following
statements are equivalent :
i) fn(a) = 0, n∀ = 0, 1, 2, ..... at a point ‘a’ in C.
ii) f(z) = 0 in a neighbourhood K of a point ‘a’ in C.
iii) f(z) = 0 in C. (6+8)

3. a) Define radius of convergence. Let ∑
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is radius of convergence of the power series. Then prove that the Taylor’s
expansion of f(z) in the neighbourhood of a point ‘a’ is exactly the given
power series.

b) Find the radius of convergence of
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c) Find the power series expansion of )3z4z(z
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, in the regions.

i) 1z0 << ii) 3z1 << . (6+4+4)
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4. a) State and prove Laurent’s theorem.

b) Let f(z) be analytic function having an isolated singularity at z = a. If )z(f  is
bounded in a neighbourhood { }raz0 <−<  then prove that f(z) has a
removable singularity at z = a.

c) State and prove open mapping theorem. (6+4+4)

5. a) State and prove Cauchy’s residue theorem.

b) Evaluate any two of the following :
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(4+10)

6. a) Let f(z) analytic inside a simple closed contour γ and let f(z) be continuous

on γ . If f(z) has no zeros on γ then prove that f(z) has only a finite number of
zeros in the interior of γ .

b) Prove that all the roots of z7 – 5z3 + 12 = 0 lie between the circles 1z = and

2z = .

c) Let f(z) be an analytic in the disc { }Rz < , R > 0, then show that M(r) is a
monotonically increasing function of R in [0, R] unless f(z) is not
constant. (5+4+5)

7. a) State and prove Hadamard’s three circle theorem and prove that log M(r) is
a convex function of log r.

b) State and prove Weierstrass factorization theorem. (7+7)

8. a) Define Harmonic function. State and prove the mean value property for
harmonic functions.

b) Derive the Poisson’s integral formula with standard notation. (7+7)
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